Online talk “A paradoxical kind of sleep in Drosophila melanogaster”

Online, GB

Attendance type(s): In Person

Event Dates: 30 Apr 2020

The talk will start at 11am.
After the talk, at 12.15pm, everyone is welcome to join for an informal Q&A chat with Prof. Bruno van Swinderen. Details on how to join the talk and the informal Q&A will be released via our mailing list (info on how to subscribe on https://cortexclub.com).

The dynamic nature of sleep in most animals suggests distinct stages which serve different functions. Genetic sleep induction methods in animal models provide a powerful way to disambiguate these stages and functions, although behavioural methods alone are insufficient to accurately identify what kind of sleep is being engaged. In Drosophila, activation of the dorsal fan-shaped body (dFB) promotes sleep, but it remains unclear what kind of sleep this is, how the rest of the fly brain is behaving, or if any specific sleep functions are being achieved. Here, we developed a method to record calcium activity from thousands of neurons across a volume of the fly brain during dFB-induced sleep, and we compared this to the effects of a sleep-promoting drug. We found that drug-induced spontaneous sleep decreased brain activity and connectivity, whereas dFB sleep was not different from wakefulness. Paradoxically, dFB-induced sleep was found to be even deeper than drug-induced sleep. When we probed the sleeping fly brain with salient visual stimuli, we found that the activity of visually-responsive neurons was blocked by dFB activation, confirming a disconnect from the external environment. Prolonged optogenetic dFB activation nevertheless achieved a significant sleep function, by correcting visual attention defects brought on by sleep deprivation. These results suggest that dFB activation promotes a distinct form of sleep in Drosophila, where brain activity and connectivity remain similar to wakefulness, but responsiveness to external sensory stimuli is profoundly suppressed.

Contact Details

Email: cortex.club@studentclubs.ox.ac.uk